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The mechanical nonlinear behaviour of metallocene- and Ziegler-Natta catalyzed
polyethylenes with various contents of short chain branching was investigated using a
nonlinear constitutive equation in which the plastic deformation and the anharmonicity of
elastic response are taken into account. It is suggested that the mechanical behaviour is
governed by the plastic deformation for the Ziegler-Natta catalyzed polyethylenes, whereas
the anharmonicity strongly affects the mechanical behaviour for metallocene-catalyzed
polyethylenes. C© 2000 Kluwer Academic Publishers

1. Introduction
In recent years, much attention has been focused on
the mechanical properties such as toughness and stiff-
ness for polyethylene solids because of the growing
use in engineering applications such as water and gas
pipes [1–3]. For the materials design, a simple mathe-
matical model for predicting mechanical responses un-
der loading and deformation, particularly in the pre-
yield region, is desirable [4]. It has been identified,
however, that the mechanical properties of polyethylene
(PE) materials are highly nonlinear and time-dependent
so that the use of linear viscoelastic theory for PE is
limited to the prediction of mechanical response even
at small deformations [5]. This is because PE materials
exhibit viscoelasticity accompanying the elastic anhar-
monicity [6–8] and plastic deformation [9–11]. To char-
acterize such complex behaviour, we have developed a
constitutive model that describes nonlinear viscoelastic
behaviour accompanying the anharmonicity in elastic
response and plastic deformation [12].

In the past, linear polyethylenes and related copo-
lymers synthesized using Ziegler-Natta catalysts have
been widely studied [13–17]. However, much impor-
tant information is of limited utility in understanding
the general characteristics of the mechanical proper-
ties of polyethylenes. The reason for this situation lies
in the polydispersity in composition and in molecular
weight, which is a typical feature of the conventional
polyethylenes used in the past [18–20]. The develop-
ment of the single-site metallocene catalysts [21] has

∗ Author to whom all correspondence should be addressed.

led to a new type of linear polyethylene having nar-
rower molecular weight distribution and homogeneous
comonomer distribution [22, 23]. Thus, the microstruc-
ture of the metallocene-catalyzed polyethylenes dif-
fers significantly from that of Ziegler-Natta-catalyzed
polyethylenes.

In this work, we have studied the mechanical nonlin-
earity of metallocene-catalyzed polyethylenes which
contain various degrees of short-chain branching, in
comparison with the corresponding Ziegler-Natta cat-
alyzed linear polyethylenes. A nonlinear viscoelastic
model including two nonlinear factors of the plastic
deformation and the anharmonic elasticity was used to
analyze the mechanical data. Moreover, the resulting
predictions in stress relaxation were compared with the
experimental relaxation data and the applicability of the
constitutive equation was examined. The final objective
of the present work is to provide the constitutive equa-
tion suitable for mechanical response in the pre-yield
regions of polyethylene solids.

2. Theoretical survey
In the previous article [12], a nonlinear constitutive
equation was developed by introducing anharmonic
springs and the plastic strain component into the lin-
ear viscoelastic model. Details of these theoretical pro-
cesses and the analytical procedure are presented in
the previous study. Here we briefly repeat its main
outline.
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According to the linear viscoelastic theory [24], the
constitutive relation is given by the following integral
form:

σ (t) =
∫ t

−∞
E(t − t ′)

(
dε

dt ′

)
dt ′ (1)

whereσ (t) is the true stress as a function of timet , ε is
the natural strain, andE(t) is known as the relaxation
modulus for the material which is given by

E(t) =
∫ ∞
−∞

H (τ ) exp

(
− t

τ

)
d lnτ (2)

whereτ is the relaxation time andH (τ ) is the spectrum
of relaxation times expressed as a function of lnτ . Here,
the anharmonicity in elastic response is introduced into
the above viscoelastic model. The nonlinear elastic el-
ement with an anharmonic potential function proposed
by Toda [25] is employed on the basis of the previous
idea. After some algebraic manipulations, one obtains
the stress response to an arbitrary strain input:

σ (t) =
∫ t

−∞
E(t − t ′; ε)

(
dε

dt ′

)
dt ′ (3)

and the response functionE(t ; ε) has the form:

E(t ; ε)=∫ ∞
−∞

H (τ)
e−t/τe−2γGε

[1− (1− e−2γGε)(1− e−t/τ )]2
d lnτ (4)

where γG is a nonlinear parameter which expresses
the anharmonicity of elastic response. The nonlinear
parameterγG corresponds to the Gr¨uneisen constant
which can be estimated by−dln

√
E/dε [26, 27]. If the

applied strain is small, the denominator of Equation 4 is
approximately equal to unity so that the response func-
tion E(t ; ε) is separable into the strain dependent term
0(ε) and the time-dependent termE(t) as follows:

E(t ; ε) = E(t)0(ε) (5)

whereE(t) is given by Equation 2 and the anharmonic
function0(ε) becomes the exponential decay function
as follows:

0(ε) = exp(−2γGε) (6)

Such separable form of the response function has been
verified in typical semicrystalline solids by previous
experimental studies [28–31].

In view of the plasto-viscoelastic behaviour, we as-
sume that the plastic deformation induces overestima-
tion of the strain. Therefore, a part of the applied strain
is consumed as plastic deformation and the remainder
contributes effectively to the generation of the stress.
Hence, we introduce the effective strain fraction9(t),

which can be defined as the contribution of the effective
strain to the total strainγ :

dε = 9(t) dγ =
(

dγ

dt

)
9(t) dt (7)

Hereafter the strainε is referred to as the effective strain
and theγ as the applied strain. Considering that a mate-
rial is deformed at a constant rate and the deformation
is applied att = 0, the strainγ can be approximated
by ln(1+ Rt) whereR is the nominal-stain rate. Then
we obtain

σ (t) =
∫ t

0
E(t − t ′)0(ε)

R

1+ Rt′
9(t ′) dt ′ (8)

3. Experimental
3.1. Materials and sample preparation
In this work, two sets of linear polyethylenes cover-
ing an ethylene-1-hexene comonomer content of 0 to
3.5 mol% were used. One is a new type of polyethy-
lene prepared using a metallocene catalyst system and
the other one is a conventional type of polyethylene
prepared using a Ziegler-Natta catalyst.

The molecular characteristics of all the samples are
given in Table I. The weight and number average molec-
ular weights were obtained from gel permeation chro-
matography by following conventional procedures. The
co-unit content was determined by high-resolution13C
NMR using established methods and assignments that
are reported in the literature [32, 33]. All the poly-
mers have approximately the same molecular weight
but the metallocene-catalyzed polyethylenes have a nar-
rower distribution (Mw/Mn close to 2). The nomen-
clature used in this study is as follows: M-PE is
the metallocene-catalyzed polyethylene, ZN-PE the
Ziegler-Natta catalyzed polyethylenes, and its end nu-
meral the average content of short chain branching
(SCB) in mol%.

According to temperature rising elution fractionation
(TREF) measurements [34], the M-PE polymers show
homogeneous composition whereas the ZN-PE poly-
mers are composed of three fractions in which the first
fraction with a higher molecular weight has little SCB
content, the second one is the main component with
the average degree of SCB and the average molecular
weight, and the third one is the component having a
higher SCB and a lower molecular weight.

TABLE I Molecular characteristics of samples

Sample Mw (104) Mn (104) Mw/Mn SCB/mol %

M-PE0 6.70 3.00 2.23 0
M-PE0.9 7.80 4.40 1.77 0.88
M-PE1.8 7.90 4.60 1.72 1.82
M-PE2.2 7.40 4.10 1.80 2.18
M-PE3.1 8.00 4.80 1.67 3.08
M-PE3.5 7.70 4.30 1.79 3.54
ZN-PE0 5.80 1.19 4.87 0
ZN-PE0.9 8.70 2.80 3.11 0.92
ZN-PE2.5 8.40 2.70 3.11 2.52
ZN-PE3.4 9.00 2.80 3.21 3.42
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These polyethylenes were melt pressed in a labora-
tory press at 463 K and at 10 MPa for 3 min. Samples
quenched at 273 K were prepared for the measurements.
The thickness of the compression molded samples was
adjusted to suit the intended experiment.

3.2. Sample characterization
The densities for all samples were measured at 303 K
using the floatation method. Binary media prepared
from various ratios of distilled water and ethyl alco-
hol were used. The degrees of crystallinity were cal-
culated from a relationship with constants of 1000 and
856 kg/m3 for the density of the crystalline and amor-
phous regions, respectively [35].

The small angle X-ray scattering (SAXS) mea-
surement was performed with point focusing optics
and an one-dimensional position sensitive proportional
counter (PSPC) with an effective length of 100 mm.
The SAXS optics has a toroidal mirror and a crystal
monochromator to focus the scattered intensity on the
PSPC. The Cu Kα radiation supplied by a MAC Sci-
ence M18X generator operating at 40 kV and 30 mA
was used throughout. The distance between the sample
and PSPC was about 0.4 m. The geometry was further
checked by a chicken tendon collagen sample, which
gives a set of sharp diffractions corresponding to a pe-
riod of 65.3 nm.

From the volume fraction crystallinityχv obtained
from the density data and the SAXS long periodLp,
the lamellar crystal thicknessLc and the amorphous
layer thicknessLa can be determined from the follow-
ing relationships:Lc = χv Lp andLa = (1− χv)Lp.

As is seen in Fig. 1, the introduction of noncrystal-
lizing co-unts into the main chain leads to a continuous
decrease in the lamellar thickness with increasing SCB
content. It is interesting to note that the lamellar thick-
ness of M-PEs is lower that that of ZN-PE at the same
SCB content and the amorphous layer thickness of M-
PE remains constant. This is because the methylene
stem length that is crystallizable is effectively reduced
by the homogeneous introduction ofα-olefin units. It
should be noted here that an important difference in
lamellar morphology between both PEs is that ZN-PE
has a greater heterogeneity in lamellar and amorphous
layer thicknesses.

3.3. Measurements
3.3.1. Analytical method
In this section, an analytical method for determining
the mechanical parameters such as the Gr¨uneisen con-
stant and the plastic deformation fraction is presented.
Considering that the oscillatory modulusE∗(ω) can be
given byF [E(t)]/ iω, wherei = √−1, ω is the angu-
lar frequency and the operatorF denotes the Fourier
transformation. The Fourier transformation of the non-
linear response functionE(t ; ε) has the form:

F [E(t ; ε)] = F [E(t)]0(ε) = (iω)−1E∗(ω)0(ε) (9)

Thus, the anharmonic function0(ε) at any elongation

Figure 1 SCB dependences of crystalline thickness (h) and amorphous
layer thickness (x) for metallocene-catalyzed PEs and Ziegler-Natta-
catalyzed PEs.

time t can be obtained by the transient dynamic moduli
data during elongation:

0(ε)|t = t = |E
∗(ω)|t = t

|E∗(ω)|t = 0
(10)

Also, using the Laplace transformation of the nonlinear
constitutive Equation 8, one can obtain the solution for
the transient effective strain fraction9(t) as follows:

9(t) = 1+ Rt

R
+−1

[
+[σ (t)]

+[E(t ; ε)]

]
(11)

where the operator+ denotes the Laplace transform.
The value of the response functionE(t ; ε) at any elon-
gation timet can be determined from the linear relax-
ation modulus dataE(t) and the anharmonic function
0(ε) at any time evaluated from Equation 10. Substitut-
ing the values ofE(t ; ε) and the stressσ (t) at any time
into Equation 11 gives the value of the effective strain
fraction9(t) as a function of time. Subsequently, the
effective strainε at any timet can be calculated using

ε|t = t = R

1+ Rt

∫ t

0
9(t ′) dt ′ (12)

Combination of Equations 10 and 12 gives the relation-
ship between the anharmonic function and the effective
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strain, and the Gr¨uneisen constant can be obtained from
the slope of the ln0(ε) vs.ε relation:

γG = −1

2

d ln0(ε)

dε
(13)

Furthermore, the transient plastic deformation fraction
φPL(t) can be determined by the following equation:

φPL(t) = γ − ε
γ
= 1− 1

γ

∫ t

0
γ̇ 9(t ′) dt ′ (14)

whereφPL(t) indicates the accumulated plastic strains
when current deformation is applied.

In summary, the measurements of stress and strain
under simultaneous elongation and oscillation make it
possible to quantitatively determine the differences be-
tween the variation of transient moduli during elonga-
tion and the derivative curve of the stress-strain rela-
tion. Thus the horizontal shifts for the derivative curve
of the stress-strain relation are necessarily in agreement
with the values obtained from the simultaneous mea-
surements. The horizontal shifts provide the effective
strain fraction; moreover, the anharmonicity in elastic
response can be evaluated from the changes in the tran-
sient modulus with respect to the effective strain.

3.3.2. Experimental method
The determination for the nonlinear parameters such
as the plastic deformation fraction and the Gr¨uneisen
constant demands the measurement of the transient
modulus data during an uniaxial elongation at a con-
stant rate of deformation. A dynamic mechanical ana-
lyzer (Rheology Co., Ltd. DVE V-4) was modified to
have the capability of subjecting a film specimen to a
constant-rate elongation together with small-amplitude
sinusoidal strain. The elongational rate was 1.0 mm/min
(R= 0.0833%/s), the initial length between the clamps
was 20 mm, the amplitude of oscillatory deforma-
tion was 10µm, and the frequency of the oscillation
was 100 Hz. The experimental setup is illustrated in
Fig. 2.

When a sinusoidal strain superimposed onto an
elongation strain is applied to a specimen under the
condition of R¿ ω/2π , the stress responseσ (t) can

Figure 2 Schema of the experimental set-up for tensile measurement
with a sinusoidal deformation.

be expressed by the fundamental components of the
Fourier expansion:

σ ∗(t) = σ (t)+ a1 exp(iωt)+ b1 exp(−iωt) (15)

In this work, the transient modulus during elongation
was defined as

|E∗(ω)| =
√

a2
1 + b2

1

γ0
(16)

The linear relaxation modulusE(t) was evaluated from
the master curves of linear dynamic moduli in the un-
deformed state using the following equation [36]:

E(t) = E′(ω)− 0.560E′′
(
ω

2

)
+ 0.200E′′(ω)|ω= 1

t

(17)

The frequency dependence of the dynamic moduli was
measured in the frequency range of 0.02 and 200 Hz
at temperatures between 290 K and 353 K. The relax-
ation component ofE(t), and the relaxation spectrum
H (τ ) were also formulated by means of an analytical
technique being referred to as “Procedure X” [37].

The Poisson ratios for all the samples were measured
using an Instron Model-4466 in order to evaluate the
true stress required for the analysis. The cross sectional
area in the deformed portion was transiently measured
as a function of strain. Also, the specimen was con-
firmed to be homogeneously deformed in the pre-yield
regions, leading to the relationγ = ln(1+ Rt). De-
tails of the experimental method were described in the
previous paper [12].

4. Results and discussion
Fig. 3 shows the true stress vs. elongation time curves
measured together with the oscillatory deformation for
all the samples. It is confirmed (but not presented here)
that the curves are identical with the curves without the
oscillatory deformation. In this work, the curves in the
pre-yield strain region, where all PE samples showed
no stress-whitening or necking and are homogeneously
deformed, are analyzed.

As seen in Fig. 3, lowering the SCB content causes
the overall stress to decrease in this strain region. It
should be noted here that M-PE samples show a greater
effect of comonomer unit on the stress magnitude;
moreover, the ZN-PE0, M-PE0, and ZN-PE0.9 sam-
ples exhibiting a relatively higher stress showed stress-
whitening in the post-yield region.

4.1. Plastic deformation fraction
Fig. 4 shows the variation of the plastic deformation
fractionφPL with elongation timet . As seen in the fig-
ures,φPL increases monotonically with elongation for
all the samples and an increase in the SCB content low-
ers the magnitude ofφPL. It is interesting to note that
the magnitude ofφPL at an applied strainγ = 0.16 (or
elongation time= 200 s) for the ZN-PE is greater than
that for M-PE, as is shown in Fig. 5. Furthermore, we
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Figure 3 True stress-elongation time curves under a strain rate of
0.08%/s at 298 K for (a) metallocene-catalyzed PEs and (b) Ziegler-
Natta-catalyzed PEs.

found a linear relationship between the crystallinity and
the plastic deformation fraction (see Fig. 6), indicating
that the plastic deformation generated in the pre-yield
region is governed by the crystal fraction. This is plausi-
ble since the plastic deformation occurs predominantly
in the crystalline region [9, 10].

The derivative ofφPL with respect to the elongation
time are plotted against elongation time in Fig. 7. It
was found that the derivative values ofφPL show a
maximum at smaller strains for all samples, suggest-

Figure 4 Plastic deformation fractionφPL(t) plotted against the elonga-
tional time under a strain rate of 0.08%/s at 298 K for (a) metallocene-
catalyzed PEs and (b) Ziegler-Natta-catalyzed PEs.

ing that the plastic deformation occurs progressively
in the initial strain region. In particular, M-PE0, ZN-
PE0, and ZN-PE0.9 samples exhibit a sharp increase
in dφPL/dt and showed stress-whitening in the higher
strain regions;i.e.beyond yield point or necking region.
These results suggest that in the case of higher density
PEs, plastic deformation such as molecular-level cracks
and microvoids generated from the structural flaws
that occur in the initial strain region, which then de-
velop into macroscopic defects, being the origin of the
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Figure 5 Plastic strain fractionφPL(t) at an applied strain of 0.16 plot-
ted against short-chain branching for (h)metallocene-catalyzed PEs and
( x) Ziegler-Natta-catalyzed PEs.

Figure 6 Plastic deformation fractionφPL(t) at an applied strain of
0.16 plotted against the degree of crystallinity in volume fraction for
( h) metallocene-catalyzed PEs and (x) Ziegler-Natta-catalyzed PEs.

stress-whitening in the higher strain region. Indeed,
this has already been demonstrated from our previous
ultrasonic measurements for other polyethylenes and
polypropylenes [38, 39].

As is also seen in Fig. 7, the plastic deformation be-
haviour of ZN-PE0.9 differs significantly from that of
other branched PE samples and has similar behaviour
to M-PE0 and ZN-PE0. Considering that the ZN-PE0.9
sample has heterogeneous SCB distribution and a lower
SCB content, the comonomer units should be excluded
from crystals when a molecule crystallizes. Therefore,
it follows that the molecular organization of its crys-
talline phase, which is a key factor in plastic deforma-
tion, is similar to that of unbranched PE,i.e. M-PE0
and ZN-PE0.

4.2. Anharmonicity
The crystallinity dependence of the Gr¨uneisen constant
γG is shown in Fig. 8. The figure shows that the values
of γG are between 1 and 4, which are comparable to the
published data of typical polyethylene materials [40,
41]. It is of significant interest to note that M-PEs
exhibit a linear relationship betweenγG and crys-

Figure 7 Derivative curves ofφPL(t) for (a) metallocene-catalyzed PEs
and (b) Ziegler-Natta-catalyzed PEs.

tallinity, and the data extrapolate to the origin for zero
crystallinity. Thus, a completely amorphous polymer
is suggested to display no anharmonic response.
Considering that the decrease in crystallinity for
M-PEs is caused not by the increase in the amorphous
layer but by the decrease in the crystalline thickness,
the increase in crystallinity causes a greater strain to be
imposed on the amorphous parts in the initial deformed
states, which can lead to a higher nonlinearity in elastic
response. It should be noted here that theγG values of
branched ZN-PEs are lower that those of M-PEs at the
same crystallinity. This seems to be associated with
the differences in microstructures between M-PE and
ZN-PE.

In general, the materials with a higher degree
of crystallinity show stronger anharmonicity whilst
the rubberlike ones show a harmonic response. In
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Figure 8 Relationship between the Gr¨uneisen constantγG and the de-
gree of crystallinity in volume fraction for (h) metallocene-catalyzed
PEs and (x) Ziegler-Natta-catalyzed PEs.

Figure 9 Relaxation modulus under various natural strain levels for Ziegler-Natta-catalyzed PEs and metallocene-catalyzed PEs. The solid lines
denote the theoretical values, the dotted lines denote the values predicted from the linear viscoelastic theory, and the open circles denote experimental
values.

addition, in contrast to the plastic deformation, the
degree of anharmonicity seems to be affected mainly
by the soft components of the materials because the
anharmonic response is effectively enhanced by a
large deformation. The heterogeneous incorporation
of comonomer units along a main chain in branched
ZN-PEs leads to an increase of amorphous thickness
rather than a decrease of lamellar thickness as well
as to broader distributions in the crystalline thickness.
At the beginning of deformation, the less-organized
crystalline portions with a higher amorphous fraction
act as strain concentrators because of their lower
modulus. Consequently, the fact that the branched
ZN-PEs exhibit a lowerγG seems to be attributed to
the strain concentration on the soft component.

4.3. Stress-relaxation behaviour
The nonlinear parameters such as the degrees of plas-
ticity and of anharmonicity in Equation 8 were found to
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be evaluated by experimental data obtained from simul-
taneous measurement of elongation and oscillatory de-
formation. We can develop the constitutive Equation 8
to predict the stress-relaxation behaviour in the nonlin-
ear region. The model predictions were then compared
with the experimental results, in order to confirm the
validity in these nonlinear parameters.

Stress-relaxation tests of 103 s duration were con-
ducted using the dynamic mechanical analyzer at
natural strain levels up to about 10% in which all the
samples were in the pre-yield region. The initial length
between clamps was 20 mm and the temperature was
kept at 298 K during the experiment. The loading pro-
cess was to ramp at a constant deformation rate of 1.0
mm/min to the desired strain levels.

The stress-relaxation behaviour can be obtained
as [42]

σ (θ ) =
∫ ∞
−∞

{∫ t0

0
exp

(
− t0− t ′

τ

)
0(ε)

R

1+ Rt′

×9(t ′) dt ′
}

H (τ ) exp

(
− θ
τ

)
d lnτ (18)

where t0 is the time after a ramp process. Putting
the experimental data;i.e. the Grüneisen constant
γG, the effective strain fraction9(t) and the linear
relaxation modulusE(t), into Equation 18 provides the
stress-relaxation behaviour. The relaxation modulus in
the nonlinear region defined in this work byσ (θ )/γ0=
σ (θ )/ln(1 + Rt0), where γ0 is the applied natural
strain, was compared with the experimental results, as
exemplified in Fig. 9, The theoretical predictions are in
excellent agreement for all the samples. In the figures,
the computational results from the linear viscoelastic
theory are also included as dotted lines. A comparison
with the predictions from the linear viscoelastic
model demonstrates that the present nonlinear model
succeeded in describing vertical shifting of the linear
stress-relaxation behavior in the nonlinear regions.
The vertical shift seems to be attributed mainly to the
reduction in elastic modulus due to the anharmonicity
of the materials.

5. Conclusions
The nonlinear tensile behaviour in the pre-yield re-
gion for two sets of linear butyl-branched polyethylenes
prepared using metallocene and Ziegler-Natta catalysts
was investigated using a nonlinear constitutive equation
in which the plastic deformation and the anharmonicity
of elastic response are taken into account. The impor-
tant conclusion concerning the mechanical behavioural
difference between both polyethylenes is that the
branched Ziegler-Natta-catalyzed polyethylenes show
a higher degree of the plastic deformation and that the
branched metallocene-catalyzed polyethylenes show a
higher anharmonicity when the polyethylenes of almost
the same SCB content are compared. Considering that
the plastic deformation fraction depends largely on the
hard components (well-organized crystalline regions)
whilst the anharmonicity is governed by the stress re-
sponse from the soft components (less-organized crys-

talline regions), the differences in mechanical nature
between both branched polyethylenes arise from the
differences in microstructures between metallocene-
catalyzed and Ziegler-Natta catalyzed polyethylenes.

Furthermore, it was found that the nonlinear param-
eters such asφPL andγG obtained from the stress-strain
responses enable us to predict the stress-relaxation
process of polyethylenes in the nonlinear region. The
authors emphasize that the present experimental and
analytical techniques become a great help in the quan-
titative characterization of the effects of microstruc-
tures and/or molecular morphology on the mechan-
ical properties for semicrystalline polymers. Thus,
these mechanical parameters obtained by the present
method will be fundamental in design and application
of polyethylene materials.
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